Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments.

نویسندگان

  • J N Pelletier
  • F X Campbell-Valois
  • S W Michnick
چکیده

Reassembly of enzymes from peptide fragments has been used as a strategy for understanding the evolution, folding, and role of individual subdomains in catalysis and regulation of activity. We demonstrate an oligomerization-assisted enzyme reassembly strategy whereby fragments are covalently linked to independently folding and interacting domains whose interactions serve to promote efficient refolding and complementation of fragments, forming active enzyme. We show that active murine dihydrofolate reductase (E.C. 1.5.1.3) can be reassembled from complementary N- and C-terminal fragments when fused to homodimerizing GCN4 leucine zipper-forming sequences as well as heterodimerizing protein partners. Reassembly is detected by an in vivo selection assay in Escherichia coli and in vitro. The effects of mutations that disrupt fragment affinity or enzyme activity were assessed. The steady-state kinetic parameters for the reassembled mutant (Phe-31 --> Ser) were determined; they are not significantly different from the full-length mutant. The strategy described here provides a general approach for protein dissection and domain swapping studies, with the capacity both for rapid in vivo screening as well as in vitro characterization. Further, the strategy suggests a simple in vivo enzyme-based detection system for protein-protein interactions, which we illustrate with two examples: ras-GTPase and raf-ras-binding domain and FK506-binding protein-rapamycin complexed with the target of rapamycin TOR2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clonal selection and in vivo quantitation of protein interactions with protein-fragment complementation assays.

Two strategies are described for detecting constitutive or induced protein-protein interactions in intact mammalian cells; these strategies are based on oligomerization domain-assisted complementation of rationally designed fragments of the murine enzyme dihydrofolate reductase (DHFR; EC 1.5.1.3). We describe a dominant clonal-selection assay of stably transfected cells expressing partner prote...

متن کامل

Design of combinatorial protein libraries of optimal size.

In this article we introduce a computational procedure, OPTCOMB (Optimal Pattern of Tiling for COMBinatorial library design), for designing protein hybrid libraries that optimally balance library size with quality. The proposed procedure is directly applicable to oligonucleotide ligation-based protocols such as GeneReassembly, DHR, SISDC, and many more. Given a set of parental sequences and the...

متن کامل

New Antifolates: Pharmacology and Clinical Applications.

Many new antifolate compounds with unique clinical properties are currently in clinical development. Some of these agents have been rationally designed to circumvent known mechanisms of resistance to methotrexate, the most useful and extensively studied antifolate in clinical practice. Resistance to methotrexate can result from decreased active transport into cells, decreased polyglutamation re...

متن کامل

Keep on Moving: Discovering and Perturbing the Conformational Dynamics of Enzymes

CONSPECTUS: Because living organisms are in constant motion, the word "dynamics" can hold many meanings to biologists. Here we focus specifically on the conformational changes that occur in proteins and how studying these protein dynamics may provide insights into enzymatic catalysis. Advances in integrating techniques such as X-ray crystallography, nuclear magnetic resonance, and electron cryo...

متن کامل

Artificial duplication of the R67 dihydrofolate reductase gene to create protein asymmetry. Effects on protein activity and folding.

R67 dihydrofolate reductase (DHFR), encoded by an R plasmid, provides resistance to the antibacterial drug trimethoprim. This enzyme does not exhibit any structural or sequence homologies with chromosomal DHFR. A recent crystal structure of tetrameric R67 DHFR (D. Matthews, X. Nguyen-huu, and N. Narayana, personal communication) shows a single pore traversing the length of the molecule. Numerou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 21  شماره 

صفحات  -

تاریخ انتشار 1998